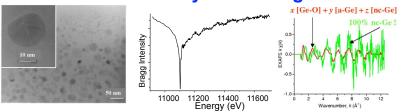
Quick X-ray Absorption and Scattering (QAS)

QAS at NSLS-II

- Will enable in-situ and operando studies of complex nanoscale systems undergoing real-time transformations
- Will enable synchronous measurements of nanocatalysts by complementary techniques including IR, XAS, XRD, DAFS and mass spectrometry
- Will probe complex interactions in nanoscale systems at the time scale from tens of ms to hours and length scale from \mathring{A} to μm

Examples of Science Areas & Impact


- CATALYSIS: Investigations of structure, kinetics, dynamics and reactivity during in situ transformations with 10 ms time resolution
- GLASSES AND MEMORY ALLOYS: Understanding correlations between glass-forming ability and structure of novel glasses and phase-change materials
- ENVIRONMENTAL SCIENCE: Kinetics of rapid chemical processes on mineral surfaces and soils
- ENERGY GENERATION AND STORAGE: Understanding physical and chemical processes in batteries and fuel cells

Water-Gas Shift catalyst: Cu_{0.2}Ce_{0.8}O₂

These data were obtained at separate beamlines: *J. Phys. Chem. B* 2006, 110, 428 (2006). One needs the combination of fast XAFS and fast XRD to obtain composition, oxidation state and structure of the system simultaneously, which will be available at QAS beamline.

New method for catalysis investigation: DAFS

Diffraction anomalous fine structure has been used before to deconvolute the nanocrystalline and amorphous phases of the same element: *Phys. Rev. Lett. 89, 285503 (2002)*. At QAS beamline, it will be used to investigate heterogeneous mixtures of reduced and oxidized phases, as well as the nucleation and growth of nanophases.

Beamline Capabilities

TECHNIQUES: x-ray absorption spectroscopy and x-ray diffraction with 10 ms time resolution

MONOCHROMATORS: double crystal (slow scanning) and channel cut (Quick EXAFS)

SOURCE: three-pole wiggler

